Kenmerken

Auteur
Peter Harrington
Conditie
Zo goed als nieuw
Productnummer (ISBN)
9781617290183
Jaar (oorspr.)
2011

Beschrijving

BoekenBalie maakt van tweedehands jouw eerste keuze. Met een Trustscore van 4,8 (excellent) en 30 dagen retour garantie maken we dat iedere dag waar.

Titel: Machine Learning in Action
Auteur: Peter Harrington
ISBN: 9781617290183
Conditie: Als nieuw

Summary Machine Learning in Action is unique book that blends the foundational theories of machine learning with the practical realities of building tools for everyday data analysis. You'll use the flexible Python programming language to build programs that implement algorithms for data classification, forecasting, recommendations, and higher-level features like summarization and simplification. About the BookA machine is said to learn when its performance improves with experience. Learning requires algorithms and programs that capture data and ferret out the interestingor useful patterns. Once the specialized domain of analysts and mathematicians, machine learning is becoming a skill needed by many. Machine Learning in Action is a clearly written tutorial for developers. It avoids academic language and takes you straight to the techniques you'll use in your day-to-day work. Many (Python) examples present the core algorithms of statistical data processing, data analysis, and data visualization in code you can reuse. You'll understand the concepts and how they fit in with tactical tasks like classification, forecasting, recommendations, and higher-level features like summarization and simplification. Readers need no prior experience with machine learning or statistical processing. Familiarity with Python is helpful. Purchase of the print book comes with an offer of a free PDF, ePub, and Kindle eBook from Manning. Also available is all code from the book. What's Inside

  • A no-nonsense introduction

  • Examples showing common ML tasks

  • Everyday data analysis

  • Implementing classic algorithms like Apriori and Adaboos

Table of Contents
    PART 1 CLASSIFICATION
  1. Machine learning basics

  2. Classifying with k-Nearest Neighbors

  3. Splitting datasets one feature at a time: decision trees

  4. Classifying with probability theory: naïve Bayes

  5. Logistic regression

  6. Support vector machines

  7. Improving classification with the AdaBoost meta algorithm
  8. PART 2 FORECASTING NUMERIC VALUES WITH REGRESSION
  9. Predicting numeric values: regression

  10. Tree-based regression
  11. PART 3 UNSUPERVISED LEARNING
  12. Grouping unlabeled items using k-means clustering

  13. Association analysis with the Apriori algorithm

  14. Efficiently finding frequent itemsets with FP-growth
  15. PART 4 ADDITIONAL TOOLS
  16. Using principal component analysis to simplify data

  17. Simplifying data with the singular value decomposition

  18. Big data and MapReduce



Waarom je bij BoekenBalie moet zijn voor al je tweedehands boeken:

  • Bestel je voor 15:00 uur? Dan vliegt het dezelfde dag nog jouw kant op!
  • Meer dan 400.000 tweedehands boeken om uit te kiezen
  • We checken alle boeken eigenhandig
  • Vanaf 40 euro of bij 4 boeken is de verzending op onze rekening
  • 30 dagen retourgarantie


...
...
...
...
...
...
...
...
...
...
...
...
Bezorgt in heel België
1x bekeken
0x bewaard
Sinds 28 sep '25
Zoekertjesnummer: a154958018